V3 Power Ltd. Hands-on STEM Workshops for Schools and Colleges.

The six different workshops can be mixed and matched to suit timetables and/or content preferences, however we recommend they are done as per the three x two hour 'sessions' outlined below and overleaf. These sessions can then be run individually or in combination.

Workshop Title	Time	Description	Learning outcomes
Generator (stator)	90 mins	Manufacturing the stator by winding copper coils and connecting together into three phases	 Faraday's law of induction Rates of change Single vs three phase electricity generation Cogging (iron vs air cores) Insulators and conductors I^2R Resistance heating/losses Alternator design theory Use of screwdrivers Use of spanners
Generator (magnet rotors)	30 mins	Assembling the two magnet rotors by placing magnets into form	 Closed magnetic circuits and the concept of flux Pros and cons of rare earth magnets Axial flux vs radial flux generator design considerations Geopolitical impact of renewables Embodied energy of systems Safely handling powerful magnets

Workshop Title	Time	Description	Learning outcomes
Electrical system	30 mins	Explanation of the different components of a wind turbine electrical system	 Electrical power P = I * V Three-phase brake switch Converting AC to DC using rectifiers Charge controllers to divert excess power into dump loads Inverters for off grid or grid-tie applications Importance of correct fuse ratings & effective earthing Battery design, options and maintenance Wire sizing and system voltage
Testing	90 mins	Testing the wind turbine in the classroom using a fan (or outside if appropriate)	 Demonstrating effect of varying magnetic strength Demonstrating effect of differing number of turns in coils Demonstrating effect of altering blade angle of attack Using different resistances to explore load matching Data acquisition using the Arduino platform Use of multimeters

Workshop Title	Time	Description	Learning outcomes
Blades	60 mins	Manufacturing the wind turbine blades by carving them from wooden planks	 Blade theory Fluid dynamics (drag force, aerofoils, lift force) Transferring theoretical optimums into manufacturing realities Transferring designs into the real world through accurate measuring and marking Safe and effective use of spokeshave and plane Safe and effective use of drill
Assembly	60 mins	Putting together the blade hub, generator & bearing	 Significance of the "air-gap" between magnet poles High wind overspeed protection ('furling' & other methods) Importance of maintenance Importance of dynamic and rotational balancing Use of multimeters Use of spanners

Key Stage 4 Science National Curriculum Relevance

Energy

- energy changes in a system doing work using an electric current
- power as the rate of transfer of energy
- conservation of energy in a closed system
- calculating energy efficiency for any energy transfers
- renewable and non-renewable energy sources used on Earth, changes in how these are used.

Electricity

- exploring current, resistance and voltage relationships for different circuit elements ; including their graphical representations
- power transfer related to p.d. and current, or current and resistance

Magnetism and electromagnetism

- exploring the magnetic fields of permanent and induced magnets
- magnetic effects of currents, how solenoids enhance the effect

Vocabulary, units, symbols and nomenclature